International developments in Life Cycle Impact Assessment of Land Use

Dr. Miguel Brandão Massey University

International Activities

- European Commission
 - ILCD Handbook
 - PEF and OEF
- UNEP/SETAC Life Cycle Initiative
 - Guideline on Global Land Use Impacts on Biodiversity and Ecosystem Services in LCA
 - Biotic Production Potential
 - Carbon Sequestration Potential
 - Case Study

The ILCD Handbook

Superseded by PEF/OEF

European Commission recommendations

Methods evaluated against:

- Scientific criteria
 - Completeness of scope
 - Environmental relevance
 - Scientific robustness and certainty
 - Documentation, transparency and reproducibility
 - Applicability
- Stakeholder acceptance criterion
 - Degree of stakeholder acceptance and suitability for communication in a business and policy context

Scoring procedure

- **A: Full compliance**
- **B:** Compliance in all essential aspects
- **C: Compliance in some aspects**
- **D: Little compliance**
- **E:** No compliance

ILCD LCIA method recommendation levels

- Level I: Recommended and satisfactory
- Level II: Recommended, some improvements needed
- Level III: Recommended, but to be applied with caution
- Interim: Immature for recommendation but the most appropriate among existing approaches

Land Use cause-effect chain

ReCiPe2008

ILCD selected methods and underlying models

Midpoint method	Underlying model	Reference		
ReCiPe	Not based on a specific model	De Schryver and Goedkoop (2009b)		
Milà i Canals	Based on Soil Organic Matter (SOM)	Mila i Canals <i>et al.</i> (2007b)		
Baitz	Based on seven quality indicators	Baitz (2002) further developed by Bos and Wittstock (2008)		
Endpoint method	Underlying model	Reference		
EPS 2000	Based on species diversity loss and production of wood	Järvinen and Miettinen (1987)		
Eco-Indicator 99 (EI99)	Based on species diversity loss	Köllner (2000) in Goedkoop and Spriensma (2000)		
ReCiPe	Based on species diversity loss	De Schryver and Goedkoop (2009b)		
LIME	Based on species diversity loss and production of wood	Itsubo <i>et al.</i> (2008b)		
Swiss Ecoscarcity	Based on species diversity loss	Köllner (2001), Köllner and Scholz (2008)		

Sub-criteria for Land Use

- Specific underlying model
- Land transformation
- Land occupation
- Duration of physical changes
- Quantitative changes to fauna and flora
- Physical changes to soil
- Effects on climate change
- Effects on Net Primary Production
- Biodiversity loss

Analysis of midpoint methods (ILCD, 2011)

		ReCiPe Midpoint		Baitz (2002), further developed by Bos and Wittstock (2008)		Milà i Canals et al. (2007b)
Completeness of scope	E	No impact mechanism included.	в	Seven different indicators describing soil quality. Most data must be collected by the practitioner. When no site-specific data are available, country-average data are used.	с	Limited impact indicator, based on soil organic matter (SOM). Case-specific characterisation factors (CF) should be developed by the user. Site-specific data are needed. CFs available for elementary flows based on the land-use classification system CORINE+.
Environmental relevance	E	Characterisation model does not distinguish different species composition between land use types.	с	Characterisation model includes seven different land use effects. Only local effects are considered.	с	The charactersation model includes one indicator. Only local effects are considered
Scientific robustness & Certainty	0	Not further evaluated due to lack of environmental characterisation model.	в	The main scientific value is in the comprehensive selection of indicators, and the pragmatic guidance to users for calculating characterisation factors.	A	Characterisation model is reviewed and is recent (2007).
Documentation, Transp arency & Reproducibility	0	Not further evaluated.	D	A general bakground database is available. Documentation is available in both German and English, although the latter is not publicly available yet.	A	The model documentation and characterisation factors are published and available free of charge.
Applicability	0	Not further evaluated.	E	Characterisation factors should be determined by the user. The method provides guidance. Already implemented and tested in some databases.	E	Default factors are available for background processes. Case-specific characterisation factors should be produced by the practitioner. Considerable information is needed.
Overall evaluation of science-based criteria	E	No compliance with science-based criteria for the evaluation of land use impacts.	D	Seven quality indicators describing different soil-quality aspects; there is no way to aggregate these at midpoint level. Characterisation factors are not available; normalisation is not available.	с	Only one indicator describing soil quality. Case-specific characterisation factors should be produced by the practitioner. Model is reviewed and good for agro- and forestry-systems.
Overall evaluation of stakeholders' acceptance	E	No compliance with science-based criteria for the evaluation of land use impacts.	D	Complex method that produces different indicators. Not endorsed by an authoritative body.	с	Principles of the model are relatively easy to understand, but not endorsed by an authoritative body. Exclusion of biodiversity is a limitation for several relevant stakeholders.

Midpoint method evaluation (ILCD, 2011)

Overall evaluation	ReCiPe Midpoint	Baitz (2002), further developed by Bos and Wittstock (2008)	Milà i Canals <i>et al.</i> (2007)
- Completeness of scope	E	В	С
- Environmental relevance	E	С	С
- Scientific robustness & Certainty	0	В	А
- Documentation, Transparency & Reproducibility	0	D	А
- Applicability	0	E	E
Stakeholders' acceptance	0	D	С

Level III

Analysis of endpoint methods (ILCD, 2011)

		ReCiPe		Eco-Indicator 99		EP\$2000		LIME		Swiss Ecoscarcitiy
Completeness of scope	с	Valid for Northwest Europe. Indicator based on biodiversity. Possible double- counting not considered.	с	Valid for mid-Europe. Indicator based on biodiversity. Double-counting with pesticides and fertilisers considered.	D	Indicator based on biodiversity (red list species) and wood productivity. Biodiversity only based on Swedish data. Possible double-counting not considered.	D	Valid for Japan. Indicator based on biodiversity and NPP.	с	Valid for mid-Europe. Indicator based on biodiversity and adopts the CORINE classification.
Environmental relevance: Overall evaluation	с	Characterisation model reflects loss of species based on species-area relationship. Considers land use intensiveness. Exclusion of effects on primary production.	D	Characterisation model reflects loss of species based on species-area relationship. Exclusion of effects on primary production.	D	No characterisation model used. Inclusion of biodiversity and primary production effects based on empirical data.	с	Characterisation models include effects on primary production and biodiversity loss.	D	Characterisation model reflects biodiversity loss. Transformation not available in Ecoscarcity implementation.
Scientific robustness & Certainty: Overall evaluation:	с	Only input data reviewed. No uncertainty figures available. Most recent data used.	с	Only input data reviewed. Uncertainty figures available. Relatively old data employed.	С	Only input data reviewed. Uncertainty figures available. Relatively old data employed.	E	Indicators cannot be confirmed due to lack of documentation. No model uncertainties considered.	в	Characterisation model is reviewed. Uncertainty figures available.
Documentation,Transp arency & Reproducibility: Overall evaluation	A	The model documentation and results are published and available free of charge.	A	The model documentation and results are published and available free of charge	A	The model documentation and results are published and available free of charge.	E	English documentation does not exist.	A	The model documentation and results are published and available free of charge.
Applicability: Overall evaluation	в	Characterisation factors are available, can be easily applied and updated	в	Characterisation factors are available and can be easily applied and updated.	в	Characterisation factors are available and can be easily applied and updated.	D	Characterisation factors are not available in English .	в	Characterisation factors are available and can be easily applied and updated.
Overall evaluation of science based criteria	с	Based on most recent data and knowledge, considers land-use intensiveness, but does not take into account double-counting effects	D	Based on old data, does not consider land-use intensity, but takes into account effects of double-counting and uncertainty data.	D	No characterisation model used, considers NPP and biodiversity effects. Based on old data, uncertainty data included.	D	The characterisation model produced only applies to Japan. Lacks English documentation.	с	Based on recent data and knowledge, considers several land- use types (only for occupation). It does not take into account double- counting effects. The model is reviewed.
Overall evaluation of stakeholders acceptance	с	The principles of the model are relatively easy to understand, but the model is not endorsed by an authoritative body.	с	The principles of the model are relatively easy to understand, but the model is not endorsed by an authoritative body.	с	The principles of the model are relatively easy to understand, but the model is not endorsed by an authoritative body.	с	The principles of the model are relatively easy to understand, but the model is not endorsed by an authoritative body.	с	The principles of the model are relatively easy to understand, but the model is not endorsed by an authoritative body.

Endpoint method evaluation (ILCD, 2011)

Overall evaluation	ReCiPe Endpoint	Eco- Indicator 99	EPS	LIME	Swiss Ecoscarcitiy
- Completeness of scope	С	С	D	D	С
- Environmental relevance	С	D	D	С	D
- Scientific robustness & Certainty	С	С	С	E	В
-Documentation, Transparency & Reproducibility	А	А	А	E	А
- Applicability	В	В	В	D	В
Stakeholders' acceptance	С	С	С	С	С
	Intorim				

IIICEIIIII

Midpoint method evaluation (ILCD, 2011)

Recommendation	Recommended default LCIA method	Indicator	Classification
at midpoint	Model based on Soil Organic Matter (SOM) (Milà i Canals <i>et al.</i> , 2007)	Soil Organic Matter	Level III
from midpoint to endpoint	No methods recommended		Interim

UNEP-SETAC Guideline on Global Land Use Impacts on Biodiversity and Ecosystem Services in LCA

Thomas Koellner¹, Rosie Saad², Laura de Baan³, Tabea Beck⁴, Ulrike Bos⁴, <u>Miguel</u> <u>Brandão⁵</u>, Barbara Civit⁶, Jan Paul Lindner⁴, Manuele Margni¹, Llorenç Milà i Canals⁷, Danielle Maia de Souza^{2,5} and Ruedi Müller-Wenk⁸

¹U Bayreuth (Germany), ²CIRAIG (Montréal, Canada), ³ ETH Zurich (Switzerland), ⁴ U Stuttgart (Germany), ⁵ JRC (Italy), ⁶ Universidad Tecnológica Nacional (Argentina), ⁷ Unilever - Safety & Environmental Assurance Centre (UK), ⁸ U St. Gallen (Switzerland)

PROJECT DESCRIPTION AND PARTNERSHIP

Land use LCIA: aims of the project LIF

Working group UNEP/SETAC LC Initiative (phase 2):

- Harmonize practices and provide principles for Life Cycle Inventories on a global scale
- Provide <u>guidelines</u> for <u>LCIA</u> methods based on the recommendations established in phase 1
- Provide operational sets of characterization factors for impacts on :
 - 1) biodiversity
 - 2) services provided by terrestrial ecosystems
- Illustrate those findings in study cases

Characterisation factors for land use impacts on biodiversity and ecosystem services

A) Biodiversity Damage Potential

Local species diversity and functional diversity

B) Ecosystem Services Damage Potential

B1) Biotic Production

Capacity of ecosystems to produce biomass

B2) Carbon Sequestration

Capacity of ecosystems to uptake carbon from air

- **B3)** Freshwater Regulation
 - a) Capacity of ecosystems to regulate peak flow and base flow of surface water b) Capacity of ecosystems to recharge ground water
- B4) Erosion Regulation

Capacity of ecosystems to stabilize soil and to prevent sedimentation

B5) Water Purification

Chemical, physical and mechanical capacity of ecosystems to clean a polluted suspension of water

Land Use LCIA: an international collaboration

Core group: complementary parts and case studies

- PES U Bayreuth
- NSSI ETH Zürich (Switzerland)
- CIRAIG École Polytechnique de Montréal (Canada)
- LBP U Stuttgart (Germany)
- CES University of Surrey (UK)
- JRC European Commission (Italy)
- IWOE University of St. Gallen (Switzerland)
- Unilever Safety & Environmental Assurance Centre (UK)
- U Tecnológica Nacional (Argentina)

Eidgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich

University of Stuttgart

Chair of Building Physics (LBP) Life Cycle Engineering (GaBi)

iversität St. Gallen

Overview I

Part A: Foundations

 UNEP-SETAC Guideline on Global Land Use Impacts on Biodiversity and Ecosystem Services in LCA by Koellner et al.

Part B: Modelling Characterization Factors for Biodiversity

- Land use impacts on biodiversity in LCA: a global approach by Laura de Baan et al.
- Land use impacts on functional species diversity: proposal of characterization factors to assess effects on ecosystem processes by Maia de Souza et al.

Overview II

Part C: Modelling Characterization Factors for Ecosystem Services

- Global characterisation factors to assess land use impacts on biotic production by <u>Brandão and Milà i Canals</u>
- Impact of land use on climate for use in LCA carbon cycling between ecosystems and the atmosphere by <u>Müller-Wenk and Brandão</u>
- Land use impacts on freshwater regulation, erosion regulation and water purification: a spatial approach for a global scale by <u>Rosie Saad</u> <u>et al.</u>

Part D: Application to Case Studies

• Land use impact assessment of Margarine by Milà i Canals et al.

CONTEXT AND GENERAL KEY-ELEMENTS

year 1700

http://www.ncdc.noaa.gov/paleo/ctl/landuse.html

Ecosystem services are functional properties of ecosystems that contribute to human well-being

ECOSYSTEMS AND HUMAN Well-Being

Synthesis

2004

The Millennium Ecosystem Assessment

Key-elements: assessment based on a quality curve

- Transformation: change of a land area to meet the requirement of a new type of occupation
- Occupation: use of a land for anthropogenic purpose

²⁶

OUTCOME AND RESULTS

Recommendation for several key-elements (LCA practitioner / developer)

Impact assessment: Cause - effect chain

Indicators adopted

Life Cycle Impact Category	Description	Early methodologies	Consolidated CFs on a global scale	Indicators
Biodiversity Damage Potential (BDP) ^a	Impacts on biodiversity			
1) Species diversity (SD)	Capacity of ecosystems to support global species diversity	(Goedkoop et al. 2009)	(de Baan et al, 2013)	Species diversity lost per area for a specific land cover relative to reference land cover [%]
 Functional diversity (FD) 	Capacity of ecosystems to support functional diversity	-	(Souza et al. 2013)	Functional diversity lost per area for a specific land cover relative to reference land cover [%]
Ecosystem Services Damage Potential (ESDP) ^b	Impacts on global ecosystem services			
1) Biotic Production Potential (BPP)	Capacity of ecosystems to produce biomass	(Baitz et al. 2000; Milà i Canals et al. Milà i Canals 2007b)	(Brandão and Milà i Canals L 2013)	Deficit of Soil Organic Matter (SOM) due to land use [Mg SOM year]
 Climate Regulation Potential (CRP) 	Capacity of ecosystems to uptake carbon from air	-	(Müller-Wenk and Brandão 2010)	Carbon flows [t C/m ² year] change due to land use
 Freshwater Regulation Potential (FWRP) 	 a) Capacity of ecosystems to regulate peak flow and base flow of surface water 	a) –	a) –	a) Water regulation capacity [dimensionless]
	b) Capacity of ecosystems to recharge ground water	b) (Baitz et al. 2000; Milà i Canals et al. 2009)	b) (Saad et al. 2013)	b) Ground water recharge rate [mm/ year]
 Erosion Regulation Potential (ERP) 	Capacity of ecosystems to stabilise soil and to prevent sediment accumulation downstream	(Baitz et al. 2000)	(Saad et al. 2013)	Erosion resistance [ton/ha year]
5) Water Purification Potential (WPP)	Chemical, physical and mechanical capacity of ecosystems to clean a polluted suspension of water	(Baitz et al. 2000)	(Saad et al. 2013)	Cation exchange capacity [cmol_/kg_soil]

Source: Koellner et al. (2013)

Elementary flow and land-use typology in LC inventories

- Elementary flows:
 - Land occupation : [m²*years], land use type i and region k
 - Land transformation : [m²], initial land use type i -> i, region k

- Hierarchical land use classification on global scale:
 - Level 1 : very general land use and land cover classes (from GLC 2000)
 - Level 2 : refines level 1 (mainly from ecoinvent v2.0 and GLOBIO3 classification)
 - Level 3 and level 4 : mostly specify land management and the intensity of land uses

The (*) marks land cover types, which serve as a natural reference.

ID_use	Land use class	Description
0.	Unspecfied	Land use and cover not known.
0.1	Unspecified, used	Human land use and resulting land cover
		not known.
0.2	Unspecified, natural (*)	Natural land cover not known.
1.	Forest ^{a)}	Areas with tree cover >15%.
1.1	Forest, natural (*)	Forest not used by humans
1.1.1	Forest, primary (*)	Forests minimally disturbed by human impact, where flora and fauna species
1.1.2	Forest, secondary (*)	abundance are near pristine. Areas originally covered with forest or woodlands, where vegetation has been removed, forest is re-growing and is no longer in use.
1.2	Forest. used	Forests used by humans
1.2.1	Forest, extensive	Forests with extractive use and associated disturbance like hunting, and selective logging, where timber extraction is followed by re-growth including at least three naturally occurring tree species.
1.2.2	Forest, intensive	Forests with extractive use, with either even-aged stands and clear-cut patches, or less than three naturally occurring species at planting/seeding.

ID_use	Land use class	Description
5. 5.1	Agriculture ^{†)} Arable	Areas used for crop production. Cultivated areas regularly ploughed and generally under a rotation system. Cereals, legumes, fodder crops, and root crops. Includes flower and tree
		(nurseries) cultivation and vegetables as well as aromatic, medicinal and culinary plants. Excludes permanent pastures.
5.1.1	Arable, fallow	Cropland temporarily not used (< 2 years).
5.1.2	Arable, non-irrigated	Annual crop production based on natural precipitation (rainfed agriculture).
5.1.2.1	Arable, non-irrigated, extensive	+ Use of chemical-synthetic and organic fertilizer as well as pesticides is reduced.
5.1.2.2	Arable, non-irrigated, intensive	+ Chemical-synthetic and organic fertilizer as well as pesticides are applied.

Regionalization in LC inventories

- Hierarchical regionalization on global scale :
 - Level 1: Differentiation between terrestrial biomes, freshwater biomes, coastal water and shelf/deep sea biomes
 - Level 2: Climatic regions ((sub)tropical, temperate, boreal, polar)
 - Level 3: Terrestrial and freshwater biomes (n=16), marine biomes (n=3)
 - Level 4: Olson terrestrial and freshwater ecoregions (n=867 and n=238 priority regions)
 - Level 5: Exact geo-referenced information of land use

Cross tabulation: land use types and regions

- To account for a spatial differentiated impact analysis :
 - Zoning by ecological units using level 1 to 5 of hierarchical regionalization
 - Land use types classification (Level 1 to 4) used in Ecoinvent

					ate	arate	8H	let .	
				npe	and	R	ical.	1944	1.100
		n n	ole cal	al ter.	an"	200P	atop	oica. oi	
	2 ⁰	on Sun	801	We Do	° q	344 54	in Lic	~ <10x	
1 Forest									
1.1 Forest, natural	.								
1.2.1 Forest, extensive									
1.2.2 Forest, intensive									
2 Wetlands									
3 Shrub land			-	-	_				
4 Grassland									
4.1 Grassland			-						
4.2 Pasture/meadow	-				•	•	•		
5 Agriculture									
5.1.1 Arable, fallow									
5.1.2 Arable, non-irrigated									
 5.2.2.2 Permanent crops, irrigated, intensive	-								
7 Artificial areas									
7.1.2 Urban, continuously built	· ·								
7.6 Traffic area	I	•							

Cross tabulation: land use types and regions

- To account for a spatial differentiated impact analysis :
 - Zoning by ecological units using level 1 to 5 of hierarchical regionalization
 - Land use types classification (Level 1 to 4) used in Ecoinvent
- Advantages :
 - Specific inventory versus cost
 - Management of input data and coping with spatial variability
 - Processing significant amounts of data (GIS software)
 - Defining an appropriate spatial resolution scale for background and foreground systems in LC inventories
Assessment of actual land use against reference in the region

Land use in the product system

Natural situation as reference

CONCLUDING REMARKS

Concluding remarks

- Comprehensive framework suggesting relevant land use impact pathways
- Operational characterization factors for a worldwide application
- Guidance for the developers of regionalized impact assessment method:
 - To choose the appropriate level of sophistication and resolution
 - To adapt the method to a specific national / regional context
- Influence of value choices made explicit (reference situation, regeneration time, modeling period, etc.)
- Further aggregation to archetypical situation of land use types x region,
 - e.g., land transformation from forest to cropland in mountainous regions
- The challenge of details v/s practicality and the effort in data collection:
 - For foreground systems land use/location might be known in detail
 - For the background system land use/location might be partly known or unknown
- Application in industry needed

Special issue in the International Journal of LCA

Global Land Use Impacts on Biodiversity and Ecosystem Services in LCA within the framework of the UNEP/SETAC Life Cycle Initiative

- Editors: Koellner, T. and Geyer, R.
- Part A: Foundations in land use impact assessment and inventories
- Part B: Modelling Characterization Factors for Biodiversity
- Part C: Modelling Characterization Factors for Ecosystem Services
- Part D: Application to Case Studies

Papers of the special issue

Part A: Foundations

- Koellner T, L de Baan, T Beck, M Brandão, B Civit, M Margni, L Milà i Canals, R Saad, D Maia de Souza and R Müller-Wenk (2013): UNEP-SETAC Guideline on Global Land Use Impact Assessment on Biodiversity and Ecosystem Services in LCA. Int J LCA.
- 2. Koellner T, L de Baan, T Beck, M Brandão, B Civit, M Goedkoop, M Margni, L Milà i Canals, R Müller-Wenk, B Weidema and B Wittstock (2013): Principles for Life Cycle Inventories of land use on a global scale. Int J LCA.

Part B: Modelling Characterization Factors for Biodiversity

- 3. de Baan L, R Alkemade and T Koellner (2013): Land use impacts on biodiversity in LCA: a global approach. Int J LCA.
- 4. Maia de Souza D, D Flynn, R Rosenbaum and T Koellner (2013): Land use impacts on functional species diversity: proposal of characterization factors to assess effects on ecosystem processes. Int J LCA.

Part C: Modelling Characterization Factors for Ecosystem Services

- 5. Brandão M, L Milà i Canals (2013) Global characterisation factors to assess land use impacts on biotic production. Int J LCA <u>DOI:10.1007/s11367-012-0381-3</u>
- 6. * Müller-Wenk R and M Brandão (2011): Climatic impact of land use in LCA—carbon transfers between vegetation/soil and air. Int J LCA 15: 172-182.
- 7. Bos U, T Beck, J P Lindner and B Wittstock (2013): Land use impact assessment of ecosystem services according to LANCA. Int J LCA.
- 8. Saad R, T Koellner and M Margni (2013): Land use impacts on freshwater regulation, erosion regulation and water purification: a spatial approach for a global scale level. Int J LCA.

Part D: Application to Case Studies

9. Milà i Canals L, G Rigarlsford G, S Sim (2013) Land use impact assessment of Margarine. Int J LCA DOI:10.1007/s11367-012-0380-4

Global Characterisation Factors to Assess Land Use Impacts on Biotic Production

Miguel Brandão, Llorenç Milà i Canals

Contents

- Context: modelled impact pathway
- Indicators for Biotic Production Potential
- Data sources for land uses and bio-geographical coverage
 - Reference situation
- LCI data
- Needs for further research

- To provide operational characterisation factors (CF) to assess impacts on Biotic Production Potential (BPP) in LCA:
- Global Coverage
- Spatial differentiation (biomes; climate zones)
- Relevant for different land use types / life cycle stages
 - i.e. including bio-productive (agriculture, forestry...) and non-bio-productive (road, mine...) uses

Biotic Production Potential, BPP

Indicators for BPP

- BPP refers to the conditions of land that determine its short, medium and long-term inherent ability to produce and sustain biomass
- Review of indicators for BPP

Indicator	Reference
Back-up technology (endpoint)	Stewart and Weidema (2005)
Net Primary Production, NPP	Weidema and Lindeijer (2001)
Human Appropriation of Ecosystem Carbon Stock, HAPECS	Brandão et al. (2010)
Erosion	Cowell and Clift (2000)
Salinisation	Feitz and Lundie (2002)
Energy/exergy	Wagendorp et al. (2006)
Microbial biomass and diversity	Peixoto et al. (2006)
Soil organic carbon, SOC	Milà i Canals et al. (2007)

SOC as indicator for BPP

- Soil Organic Carbon (SOC) is a robust, stand-alone indicator for BPP
 - Also recommended in ILCD (European Commission 2010)
- Data are increasingly available, e.g. through IPCC (2006)
 - SOC in different soil types and land uses in world climate zones
 - Effects from land management on SOC
- Reference situation: SOC present in (quasi-)natural land cover predominant in global biomes and ecoregions
- Impact measured as "Carbon deficit" (or credit) [kg C year]

Some SOC values (tonnes C ha⁻¹ in O-30 cm depth)

CLIMATE REGION	AREA (km ²)	Relativ e (%)	Permanen t Grassland	Long- term Cultivate d	Native Ecosyste m	Set- Aside	Paddy Rice
Tropical Dry	30,553,142	22.8	36.4	37.1	37.2	36.4	38.7
Tropical Montane	7,351,295	5.5	65.0	76.3	70.9	72.7	74.8
Warm Temperate Moist	5,528,026	4.1	79.2	81.4	78.0	77.4	80.9
Warm Temperate Dry	12,631,558	9.4	36.9	38.1	37.2	37.5	37.7
Cool Temperate Moist	11,808,612	8.8	91.3	94.3	95.0	96.0	96.6
Cool Temperate Dry	12,221,975	9.1	49.1	51.4	49.2	50.3	50.3
Boreal Moist	13,770,293	10.3	84.1	70.9	85.1	73.8	66.1
Boreal Dry	3,808,837	2.8	74.9	72.7	81.8	74.1	71.8
Polar Moist	7,565,826	5.6	42.7	36.4	46.4	36.6	25.5
Polar Dry	1,975,716	1.5	47.5	45.8	53.5	46.6	45.2
Total (without	124 075 499	100.0					
Antarctica)	154,075,489	100.0					

Source: extrapolated from IPCC 2006

Calculating CF for BPP

LCI data to make this work

- Amount of occupation / transformation (i.e. including duration of use for occupation)
- Type of land use (agriculture, arable; grassland...)
- Location: climatic region / biome
- For study-specific CF:
 - SOC change due to occupation or transformation
 - Regeneration times for transformation

Assumptions, uncertainty

- Regeneration time assumed to be always shorter than modelling time (500 years)
 - IPCC suggests new steady state reached in 20 years (agricultural / forestry land uses)
 - For artificial land uses, regeneration times based on Lindeijer *et al.* (1998)
 - For certain LUC (e.g. removal of topsoil) regeneration time > 500 years might have to be considered
- Uncertainty: provided by IPCC 2006 on their land use and management factors (± 10-90%)

Applications

- SOC has been used as indicator for BPP / soil quality in several case studies to date (local vs. air-freight vegetables; biofuels; margarine)
 - Useful in distinguishing very differentiated systems
 - Results strongly influenced by SOC data sources and assumptions such as regeneration time

Discussion, needs for further research

- Increasingly abundant data sources for SOC
 - IPCC: global coverage, consistency
- Factors for permanent crops not provided yet
 - Needs for further differentiation?
- Allocation of transformation is an inventory issue
 - 20 years vs. consequential vs. average in a country...
- Regeneration times are very uncertain: cautious interpretation of CF for transformation
- Link SOC-BPP needs further testing

Impact of land use on climate for use in LCA - carbon cycling between ecosystems and the atmosphere

Miguel Brandão and Ruedi Müller-Wenk

Importance of Land Use in the Global Carbon Cycle

Reservoir Stocks in GtC: Biosphere = Vegetation, Soil & Detritus Oceans = Surface, Intermediate & Deep Ocean; Marine Biota; and Surface Sediment

Fluxes and Rate Flows in GtC per annum (pre-industrial 'natural' fluxes in blue and 'anthropogenic' fluxes in red): LUC = Land Use Change LS = Land Sink GPP = Gross Primary Production R = Respiration and Fires FF&C = Fossil Fuel & Cement Emissions

Decay of atmospheric CO₂

Radiative forcing (W/m²), t CO₂-eq. and t C^{*}yr

Radiative forcing (W/m²), t CO₂-eq. and t C^{*}yr

Global Warming Potential: the extended Moura-Costa approach

	Global Warming Potential (CO ₂ -eq)			
	20 years	100 years	500 years	
Carbon Dioxide	1	1	1	
Methane	72	25	7.6	
Nitrous Oxide	289	298	153	
Carbon Dioxide Sequestration (tonne-years)	1/14.6 = 0.074	1/47.8 = 0.021	1/157.3 = 0.006	
Carbon tonne-years	0.074*44/12= =0.27	0.021*44/12= =0.08	0.006*44/12= =0.022	

Characterisation Factors (tC/ha)

Biome	Transformation	Occupation (1 year)
Tropical Forests	25-55	0.77-0.96
Temperate Forests	24-75	0.64-0.86
Boreal Forests	27-150	0.41-0.96
Tropical Grassland	0-27	0-0.37
Temperate Grassland	0-45	0-0.42
Wet Tropical Forests	39-84	1.19-1.48
Dry Tropical Forests	10-24	0.32-0.43

Land Use Impact Assessment of Margarine

Llorenç Milà i Canals, Giles Rigarlsford and Sarah Sim

Special forum on Global Land Use Impacts on Biodiversity and Ecosystem Services in LCA

Contents

- Context and Goals
- The studied margarines
- Methods
 - Linking LCI to LCIA: quantifying LU and LUC; sourcing countries / biomes
- **Results**
- Discussion
- Conclusions

What is Margarine?

- Assessment of applicability and relevance of newly developed characterisation factors (CF)
 - Bio-geographical differentiation
 - Land use classification
- Margarine is a land-based product (through sourcing of vegetable oils)
 - Previous studies have addressed common LCA impact categories (Nilsson *et al.* 2010) and also the water footprint of margarine (Jefferies *et al.* 2012)
 - Key hotspots for land use impacts?

Margarine products considered Functional unit = 500g tub

Methods – LCI: sourcing countries

- Sourcing country is variable and not always known (commodity markets)
- Yield is highly variable: this determines occupation (land use, LU)

Crop	Source country	Biome
Sunflower seed	Argentina	Temperate grasslands, savannas and shrublands
Sunflower seed	Russian Federation	Boreal forests/taiga and Temperate broadleaf and mixed forest
Sunflower seed	Ukraine	Temperate broadleaf and mixed forest
Rapeseed	Germany	Temperate broadleaf and mixed forest
Oil Palm Fruit	Malaysia	Tropical and subtropical moist broad-leafed forest
Linseed	Canada	Boreal forests/taiga
Maize (seed)	Germany	Temperate broadleaf and mixed forest
Cassava (tapioca, tuber)	Thailand	Tropical and subtropical moist broad-leafed forest

Methods – LCI: land transformation (LUC)

Methods – LCIA

- <u>Biodiversity Damage Potential</u>, BDP: de Baan *et al.* (2012)
- <u>Climate Regulation Potential</u>, CRP: Müller-Wenk and Brandão (2010)
- <u>Biotic Production Potential</u>, BPP: Brandão and Milà i Canals (2012)
- <u>Freshwater Regulation Potential</u> (FWRP), <u>Erosion</u> <u>Regulation Potential</u> (ERP), <u>Water Purification Potential-</u> <u>physicochemical filtration</u> (WPP-PCF) and -<u>mechanical</u> <u>filtration</u> (WPP-MF): Saad and Margni (2012)

Results-LCIA

Discussion

- **Results**
 - Occupation dominating the impacts
- Applicability
 - Sourcing locations for commodities
 - Adaptation of background LCI databases
- Methodological choices
 - Significance of reference situation: potential vegetation vs. current land use mix (GLC 2000)

Conclusions

- Spatially differentiated, land-use comprehensive, impact assessment is now possible on a life cycle perspective
 - To be added to other impacts: common LCA; water...
- Significant work still needed:
 - LCI databases: to report land occupation (at least) on a regional (biome?) level
 - Land classification proposed is adequate; arable vs. permanent crops need to be distinguished
- Agreement needed on how to quantify and allocate LUC
- Land use impacts in LCA are in its INFANCY: More case studies required!
 - Overlap between impact categories?
 - Value of spatial differentiation?
 - Reference: theoretical vs. actual habitat?
Thank you! Questions?

Llorenc.Mila-i-Canals@Unilever.com www.unilever.com/sustainability www.sustainable-living.unilever.com

Special forum on Global Land Use Impacts on Biodiversity and Ecosystem Services in LCA Brussels, 17th February 2012

- Use of soil indicators by the international LCA community
- Update on how impact assessment methods capture soilrelated inventory
- Update of international frameworks with reference to soil indicators
- Steps for ensuring new approaches are consistent with these

Questions?

m.brandao@massey.ac.nz

